On a Sum Rule for Schrödinger Operators with Complex Potentials

نویسنده

  • O. SAFRONOV
چکیده

where the constant C depends on t, γ and d (see also [6] for the case when V is real). The paper [5] deals with the natural question that appears in relation to the main result of [3]: what estimates are valid for the eigenvalues situated inside the conical sector {λ : |Iλ| < tRλ}, where the eigenvalues might be close to the positive half-line? Theorems of the article [5] provide some information about the rate of accumulation of eigenvalues to the set R+ = [0,∞). Namely, [5] gives sufficient conditions on V that guarantee convergence of the sum

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sum rules and spectral measures of Schrödinger operators with L2 potentials

Necessary and sufficient conditions are presented for a positive measure to be the spectral measure of a half-line Schrödinger operator with square integrable potential.

متن کامل

Sum Rules and Spectral Measures of Schrödinger Operators with L Potentials

Necessary and sufficient conditions are presented for a positive measure to be the spectral measure of a half-line Schrödinger operator with square integrable potential.

متن کامل

A Sharp Bound on Eigenvalues of Schrödinger Operators on the Halfline with Complex-valued Potentials

We derive a sharp bound on the location of non-positive eigenvalues of Schrödinger operators on the halfline with complex-valued potentials.

متن کامل

Eigenvalue Bounds for Schrödinger Operators with Complex Potentials. Iii

We discuss the eigenvalues Ej of Schrödinger operators −∆ + V in L(R) with complex potentials V ∈ L, p < ∞. We show that (A) ReEj → ∞ implies ImEj → 0, and (B) ReEj → E ∈ [0,∞) implies (ImEj) ∈ l for some q depending on p. We prove quantitative versions of (A) and (B) in terms of the L-norm of V .

متن کامل

High energy eigenfunctions of one-dimensional Schrödinger operators with polynomial potentials

For a class of one-dimensional Schrödinger operators with polynomial potentials that includes Hermitian and PT -symmetric operators, we show that the zeros of scaled eigenfunctions have a limit distribution in the complex plane as the eigenvalues tend to infinity. This limit distribution depends only on the degree of the polynomial potential and on the boundary conditions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009